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]. INTRODUCTION

Tn the present paper L will denote a Riesz ~pace (vector lattice), that is to
say, L is a rea] vector space which is at the same time a lattice such that the
vector space structure and the lattice structure are compatible (this means
that itf :(: g holds in L, thenf h g + h for all h E= Land af :(: ag for all
real a 0). The least upper bound and the greatest lower bound off and g
in L will be denoted by supef, g) and infU; g), respectively; the customary
abbreviations f·· c=, supU; 0) and f- sup(-I, 0) will be used. and the
absolute value if I off is defined by ifif: f· Elements f 0 are
called positive elements; the set L' of all positive elements is the POSilil'e cone,
and elements .f, g satisfying inf(! f 1, I g 1)= 0 are said to be disjoinl
(notation: f 1.. g).

A familiar example is the vector space C([a, b)) of all real continuous
functions on the closed interval [a, h]. To say thatf g holds in this space
simply means thatf(x) g(x) for all x E [a, b], and supef, g) and infer g)
are the ordinary pointwise supremum and infimum. Another example is the
space Cc(- 00, 00) of all real continuous functions on (7"), 00) possessing
a compact carrier. An example of a somewhat different nature is obtained by
considering a measure space (X, 11, fL) and a number q (0 < q <YJ), and
taking now the vector space UZ UZ(X, It) of all real fL-measurable functions
f on X having the property that the integral of ;f i'l over X is finite. In this
example functions differing only on a set of measure zero have to be identified,
andf:(: g means now thatf(x) g(x) holds for fL-almost every x F .Y.

Given the Riesz space L, a linear mapping 71" from L into itself is called a
positive orthomorphism whenever infer, g)=' 0 implies inf( -n:f, g) O. The
general theory of orthomorphisms has been developed in some recent
papers [2,4], but these papers do not contain many examples. Tn particular,
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one would like to know all possible orthomorphisms in the spaces mentioned
above. In the space C([a, bD it is easy enough to indicate a certain class of
positive orthomorphisms. Indeed, given a nonnegative function p(x) in
C( [a, bD, the linear mapping 7T in C([a, bD, defined by (7Tf)(x) = p(x) .f(x),
is evidently a positive orthomorphism. The question arises whether every
positive orthomorphism in C([a, bD is of this kind. We shall prove in the
present paper that the answer is affirmative. It is of course not difficult to
guess that this has something to do with the ring structure of C( [a, bD. In
some other examples, however, we shall have to step beyond the ring
structure. In the space Cc( - 00, (0) for example one sees immediately that if
p(x) is a nonnegative continuous function on ( - 00, CX)), not necessarily with
a compact carrier, then pointwise multiplication by p(x) is a positive ortho­
morphism. We shall prove that every positive orthomorphism in Cc(- 00, (0)
is of this kind. Finally, in the example of the space LQ it is evident that
pointwise multiplication by a nonnegative Lx function is a positive ortho­
morphism, and also for this example it will be proved that every positive
orthomorphism is such a multiplication.

In the proofs we shall need an interesting theorem about commutativity of
so-called f-algebras. We explain what an f:algebra is. The Riesz space L is
called a Riesz algebra if there exists in L a (not necessarily commutative)
ring multiplication with the usual algebra properties (in particular (af) g =

f(ag) = a(fg) for real a) and such thatf, g E L+ implies jg E U. The Riesz
algebra is then called an .f-algebra if infCf, g) =~ 0 implies inf(l?f, g) =
infUh, .15)= 0 for every hE L'; in other words, whenever left and right
multiplication by positive elements are positive orthomorphisms. The notion
of anj:algebra is derived from the example that L consists of real functions
on a point set X with the Riesz space structure defined pointwise. If in this
case the ordinary pointwise product.t:l.,'" is a member of L for allfand g in L,
then L is automatically an .f-algebra, and L is then even a commutative
f-algebra. The theorem referred to above is the theorem that every
Archimedan f-algebra is commutative (the Riesz space L is called
Archimedean if it follows from 0 < nl g for n = 1,2,... thatf ,-, 0). This
commutativity result was proved first by G. Birkhoff and R. S. Pierce [3];
their proof is based on what they call a "metamathematical theorem,"
namely, the theorem that the class of Riesz algebras is "equationally
definable." Due to this the Archimedanf-algebra L can be treated in the proof
as if L were linearly ordered; it follows then that

holds for all .f, g E U- and all natural numbers n. Since L is Archimedean,
fg = gf is an immediate consequence. Several years later S. J. Bernau [1]
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published an elementary proof for the above inequality. We present a third
commutativity proof; a very simple proof although it cannot be called
elementary because it depends ultimately upon some nontrivial facts about
orthomorphisms.

Given the Riesz space L and the non-negative number a, it is evident that
multiplication by a is a positive orthomorphism in L. Let us call this a trivial
orthomorphism. [t may be asked whether there exist Riesz spaces possessing
only trivial orthomorphisms. The answer is affirmative; we shall prove that
the Riesz space of all real continuous functions f on [0, I] that are piecewise
linear (i.e., the graph off consists of a tinite number of line segments) is an
example. This example arose from some remarks made at a lecture given at
the Mathematical Institute of Nijmegen University.

2. ORTHOMORPHISMS IN ARCHIMEDEAN I-ALGEBRAS

We first collect some simple facts about Riesz spaces. The linear subspace K
of the Riesz space L is called a Riesz subspace of L if j, g E K implies
supCr, g) E K and infCr, g) E K. The subset D of L is said to be solid if it
follows from lED and I g ! If I that g E D. Any solid linear subspace is
called an ideal. Every ideal is a Riesz subspace. Any ideal 1 with the extra
property that whenever a subset of 1 has a least upper bound in L then that
least upper bound is a member of I, is called a hand. Given the (nonempty)
subset D of L, the set Dd of all gEL satisfying g J_ ffor allf cD is called the
disjoint complement of D. The disjoint complement of Dd will be denoted by
Ddel. It is evident from the definition that D is a subset of Ddd. Hence, since
D1 C D2 obviously implies DId"J D2d it follows from D C Ddd that Dd"J DddrJ.
On the other hand, replacing D by D'" in DC Deld, we obtain Dd C DddrJ.
Hence Del Ddelel. In other words, if B is the disjoint complement of some
nonempty set, then B Bdd. We shall also need the notion of order
denseness. The subset D of L is called order dense if Dd {OJ or, equivalently,
if Deld = L.

Now, let 7T be a positive orthomorphism in the Riesz space L. i.e.,
inf(j, g) 0 implies inf(7Tj; g) C~ O. It follows that infer, g) ~~ 0 also implies
inf(7Tf, 7Tg) = 0, and it is easy to derive from this that

7T{infU; g)} = inf(7Tf; 7Tg),

holds for all j, gEL. The same formula with inf replaced by sup is an
immediate consequence. Hence, the mapping 7T preserves finite suprema and
infima. Any linear mapping in L preserving finite suprema and infima is
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called a Riesz homomorphism. Any positive orthomorphism is, therefore, a
Riesz homomorphism. The converse is not true; if L = C( - 00, 00) and 7T

is a translation, i.e., (7Tf)(X) = l(x -:- a) for some constant a + 0, then 7T is
a Riesz homomorphism, but not an orthomorphism. Since any Riesz
homomorphism 7T preserves finite suprema and infima, the range Rrr of 7T

is a Riesz subspace of L. This holds in particular, therefore, if 7T is a positive
orthomorphism. In some cases, for example if 7T is pointwise multiplication
by a strictly positive function in the space C([a, b]), the range R rr is an ideal.
There exist also examples, however, that Rrr is not an ideal in L. Let L be the
Riesz space consisting of all real continuous functions f on [0, 1] such that
1(0) = °and the (right) derivativef'(O) exists as a finite number. The positive
orthomorphism 7T in L is defined by (7Tf)(X) ~~ X .lex). Then the function
lex)"~ x 2 is in R" and g(x) = x 2 sin x- l E L with g f But g is not a
member of R" because otherwise we should have x sin x- l E L. Hence, R rr

is not an ideal. The kernel (null space) Krr and the range R" of a positive
orthomorphism 7T in the Archimedean Riesz space L are related by the
formula K" = (Rrr)d; the proof is not trivial but elementary.

Any linear mapping 7T in the Riesz space L such that 7T ~-' 7Tl -- 7T2 with 7Tl

and 7T2 positive orthomorphisms is called an orthomorphism. One of the
fundamental results about orthomorphisms in an Archimedean Riesz space
is that the formula Krr = (Rrr)d continues to hold in this more general case.
In [2] and [4], this was proved by means of the representation theory for
Archimedean Riesz spaces. It is shown then that for any Archimedean Riesz
space L there exists an isomorphic space L ~ consisting of real continuous
(or continuous in the extended sense that 00 and~C/J are allowed as values)
functions on a topological space Q; an orthomorphism 7T in L corresponds
with pointwise multiplication by an appropriate function pew) in LA. The
space Q, although compact and Hausdorff, is extremally disconnected
(i.e., the closure of every open set is open). Thus, if for example L is the space
C([O, I)), the corresponding space LA, although consisting again of continuous
functions, cannot be identified with the original space L in the sense that Q
and [0, I] can be regarded as identical, because [0, I] is not extremally
disconnected. In this respect, therefore, the situation is different from the
situation for the Gelfand representation, where C([O, I]) is regarded as a
commutative Banach algebra. For this reason, although every orthomorphism
in LA is a pointwise multiplication, we may not yet conclude that the same
holds in L = C([O, 1)).

We prove now that if 7Tl and 7T2 are orthomorphisms coinciding on an order
dense set in the Archimedean Riesz space L, then 7Tl = 7T2 .

THEOREM 1. Let 7Tl and 7T2 be orthomorphisms in the Archimedean Riesz
space L such that 7Tl and 7T2 coincide on the order dense set D. Then 'TTl = 7T2 •
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Proof The mapping TT =c TTl TTZ is also an orthomorphism in L. It
follows from K" (R,Y that K" is a disjoint complement, so (K,,)dd = K"
by one of our earlier remarks. Since D C K" holds by hypothesis and since
Ddd = L (because D is order dense), we have

so K" = L. This shows that TT is the null mapping, and so TTl = TTZ •

Assume now that f and g are elements in the f-algebra L satisfying
infer, g) O. Thenfand g arc positive elements, so right multiplication by g
is a positive orthomorphism, i.e., inf(f~, g) = 0, so fg E {gY Similarly it
follows from inf( g, h) 0 for any h 0 in {g}d that inf(fg, h) = 0, so
fg E{gYd • Hencefg E{g}'l n {g}dd, sof~= O. Now, letp 1- q in L. Then

inf( p ,qi) c= inf(p c, q-) = infUr, q) = infUr, q-) = 0,

so p+q+ ,~ p+q- ..,~ p-qL rq- =.c 0 by what was proved already. It follows
that pq == O. It has been proved thus that in an Falgebra p .1. q implies
pq == O. We use this in the proof of the commutativity theorem.

THEOREM 2. Every Archimedeanf-algebra is commutative.

Proof Given the Archimedean .f-algebra L, let p be an arbitrary element
of L +. Multiplication on the left by p is a positive orthomorphism TTL in L
and multiplication on the right by p is a positive orthomorphism TTT in L.
For eachfsatisfyingf 1-p we have pl=,cfjJ =.= 0, so TTL and TTT coincide on
{p}d. Also, TTilJ p2 TTrP, so TTr and TTT coincide for p. Now, let D be the
subset of L consisting of p and {p}<l. Then Dd {O}, so D is order dense.
Furthermore, TTL and TT r coincide on D. Hence, by the preceding theorem,
we have TTl TTl" i.e., pl fp for all fE L. It follows easily that multipli­
cation is commutative.

In the next theorem it will be proved that in an Archimedeanf-algebra with
unit element every orthomorphism is a multiplication.

THEOREM 3. Let L he all Archimedeall f-algebra l,>,ith unit element (With
respect to multiplication). Given the orthomorphism TT in L, there exists an
element pEL such that TTl=c pl holds for every fE L. Conversely, every
pEL gives rise to an orthomorphism 7T in L defined by TTl =.. pllor allfE L.
The ortholllorphis/ll TT is positive if alld only if the corresponding element p is
positive.

Proof Let e be the unit element of L. Given the orthomorphism 7T in L,
let p= TTe. The product pfis in L for everyf Fe L, so TTd = !J{defines a linear
mapping TTl from L into itself. Evidently, multiplication by pi is a positive
orthomorphism in L (by the definition of an f:'algebra), and the same holds
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for multiplication by p-. Hence, multiplication by p is an orthomorphism
in L, that is to say, 171 is an orthomorphism in L. The orthomorphisms 17 and
171 coincide on the set {e}, consisting of e only. The set {e} is order dense in L
(indeed, iffE {e}rJ, thenf .-L e, so fe 0 by one of the remarks made earlier,
i.e., Ic= 0). It follows then from Theorem 1 that 17 = 171' so 17[= pI
for allfG L.

EXAMPLES. (i) Let the Riesz space L consist of real functions on a
nonempty point set X (with the vector space structure and the order structure
in the usual pointwise manner), and in addition let L be an algebra with
respect to pointwise multiplication. Furthermore, let the unit function e,
satisfying e(x) = I for all x E X, be a member of L. Then Lis an Archimedean
j:algebra with unit. J-Ience, the linear mapping 17 in L is an orthomorphism
if and only if there exists a function pEL such that (17j)(X) pCx) . fIx)
holds on X for every I E L. This holds in particular if L is the space C(X) of
all real continuous functions on a topological space X or the spa,;;e C,,( X)
of all bounded real continuous functions on X.

(ii) Lct L be the space M(X, fL) of all real and fL-almost everywhere
Jinite fL-measurable functions on the point set X, where fL is a measure in X
and where fL-almost equal functions are identified. The orthomorphisms in L
are the pointwise multiplications. The same holds if L is the subspace
U(X. fL) of all bounded functions in M(X, fL).

(iii) The theorem covers the case that L is one of the sequence spaces
(s), IT or (e). We recall that (s) is the space of all real sequences and (c) is the
space of all convergent real sequences. The theorem can also be applied if L
is the space of all real sequences I (j~ ,j~ ,... ) withIn constant for fl no
(with flo depending upon f). The sarne holds if L is the space of all real
sequences I U~ , f2 ,... ) such that In assumes only finitely many different
values (these values depending uponj).

(iv) Given the Hilbert space H (over the complex numbers), let ;If be
the ordered vector space of all bounded Hermitian operators in H (if
A, B (~ ft', then A ~;; B whenever (Ax, x) < (Bx, x) for all x E H). The space
ft' is not a Riesz space, unless in the trivial case that H is one-dimensional.
Let 9 be a nonempty subset of ft' such that all members of .0: commute
mutually, and let '6'''(9) be the second commutant of 9. Then (C"(.'2) is an
Archimedean Riesz ring, and the members of '6'''(01) commute mutually
(c.f. [6, Section 55]). Furthermore, for A, BE 'C"(P), we have A -l B if and
only if AB = e, where e is the null operator. It follows that '6"(9) is an
Archimedeanfalgebra. Hence, the mapping 17 from '6'''(~) into itself is an
orthomorphism if and only if there exists BE '6"(9) such that 17(A)~= BA
holds for all A E '6'''(9).
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The case that L is the space of all real sequences with only finitely many
non-zero terms is not covered by Theorem 3 because the unit sequence is not
in L. The following theorem takes care of this case and similar cases.

THEOREM 4. Let the Riesz space L consist of real fimctions on the point
set X, where X is the disjoint union oj" the collection oj" subsets (X,: ex E {ex}).
Let e~ be the characteristic fill1ction oj" x" , and let it be given that for each
ex E {ex} andfor aUf; gEL thefill1ctions e, ,fe" , ge, andfge" are members ofL
Given the orthomorphism 17 in L, we set p, ~c 17e~./or each CI:. Then Pa vanishes
outside X, , and denoting by P the fill1ction on X equal to Pa on each X" , we have
(17f)(X) .~ p(x) 'f(x)for aUfE L.

Proof There is no less of generality if we assume that 17 is a positive
orthomorphism. It follows then from inf(e" ( 13 ) = 0 for ex j) that
inf(17e" , ell) 0, so P" •.~ 17e" vanishes outside X". Note now that fi c"
implies inf(ft, e,) =.• inf(f-, ca ) 0, so inf(17f', e,) ••• inf(17f-, e,) ~= 0,
i.e., 17(~ c" . In other words, iff E L vanishes on Xa , then 17(vanishes on X, .
It follows that iff~ and f~ coincide on X, , then 17f~ and 17f~ conicide on X" .
Given an arbitrary I L, the functions I and f~ c= fe, coincide on X" , so 17j"
and 17fa coincide on x" , i.e.,

(17/)(X )== (17j~)(X) for x E Xx-

The functions of L, with domain restricted to X" form an Archimedean
[algebra with unit e" , so

Combining the so obtained results, we get

(iT/)(X) p(x) -((x), for x E Xx •

The last formula holds for all IX E {rx} simultaneously, and so (17f)(X)
p(x) .lex) holds for all x E X.

EXAMPLES. (v) If 17 is an orthomorphism in the space of all real sequences
I (/1 ' ./; ,... ) with only finitely many nonzero terms, then there exists a
real sequence P (PJ ,P2 ,... j such that (17f)n Pnfn for alln. Conversely,
every real sequence thus defines an orthomorphism in this space.

(vi) If iT is an orthomorphism in the space (co) of all real sequences
converging to zero, then there exists a real sequence P (PI' P2 ,... ) such that
(17f)n Pnf;, for alln. It is easy to see that in addition the sequence (PI. P2 ,... )
must be bounded in order that 17(E (co) should hold for every IE (co),

Conversely, every bounded sequence thus defines an orthomorphism in (co)·



EXAMPLES OF ORTHOMORPHISMS 199

3. ORTHOMORPHISMS IN THE SPACE OF REAL CONTINUOUS FUNCTIONS ON A

LOCALLY COMPACT HAUSDORFF SPACE

In the present section we assume that X is a locally compact Hausdorff
space and L is the Riesz space of all real continuous functions on X with
compact carrier, i.e., L = Cc(X).

THEOREM 5. If 7T is an orthomorphism in L = Cc(X), there exists a real
continuous function p(x) on X such that (7Tf)(X) = p(x) 'f(x) holds for all
f E L. Conversely, every real continuous p(x) on X gives rise to an ortho­
morphism in L.

Proof. (i) Given the open subset A of X with compact closure A-, there
exists an open subset B with compact closure such that A- C B. Tndeed,
assign to each x E A- an open neighborhood Ux with compact closure.
Then U (Ux : x E A-) is an open covering of A-, so there exists a finite
subcovering. The union of the sets in the finite subcovering may be chosen as
the required set B. It follows that there exists a real continuous function eA(x)
on X such that 0 ~ eA(x) ~ I on X, eA(x) = I for x E A and eAx) = 0
outside B. Note that eA is, therefore, a member of L.

(ii) Let 7T be an orthomorphism in L. It is no restriction for our
purposes to assume that 7T is a positive orthomorphism. We show first that if
f ELand f vanishes on the open subset A of X, then 7Tf vanishes on A.
We may assume that!E L+. Given any point X o (= A, there exists a function
uo(x) E L such that 0 uo(x) I on X. uo(xo) I and uo(x) c= () outside A.
Then infer, uo) == 0, so inf( 7T/; uo) 0, which implies that (7Tf)(XO) = O.
This holds for every X o E A, so 7Tl vanishes on A.

(iii) Let (A~: IX E {c~}) be the collection of all open subsets of X such that
A,- is compact. The collection is directed upwards with respect to partial
ordering by inclusion. To each IX we assign a function ea E L satisfying
o e,(x) I on X and e~(x) = I on A, (this is possible by (i». Furthermore,
if 7T is the given positive orthomorphism, let 7TC,,= p~ for every C~ t= {IX}.
Note that for a point x" in A a the value p,(x,,) does not depend on the values
assumed bye, outside A~ (this follows from (ii». Note also that p,(x) =.c fJiJ(x)
for x c A, n AI! (by (ii) again). Hence, this common value may be denoted
simply by p(x). Since each x E X is a point of at least one A~ , the function p(x)
is defined on the whole set X. Evidently p(x) is continuous and nonnegative
on X.

(iv) Let u(x) be a nonnegative function in L, and denote the set
(x: lI(X) > 0) by A. It will be proved that (7TU)(X) = p(x) . u(x) holds for all
x E X, and it is sufficient, therefore, to show this for all x E A (since u(x) == 0
on the complement of A- implies (mt)(x) 0 on that set). The set of aIlfE L,
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with domain restricted to A, is a Riesz space L' of real continuous functions
on A with the characteristic function XA of A as one of its members (note that
A is one of the A Q , so XA is the restriction of the corresponding e,,). The space
L' is a ring with respect to pointwise multiplication. The function p(x) is on
A .~ A, the restriction of the corresponding p"(x), so pf E L' for all f E C.
This shows that multiplication by p(x) gives rise to an orthomorphism in L'.
The "restriction" to C of the given orthomorphism 77 is an orthomorphism
77' in L', given by

(77f) . XA , for all L.

The mapping 77' is well defined on C because ./XA gXl implies that 77( and
77g coincide on A (by (ii»). Note that 77'U 77U on A for the given function
U E L+, and note also that 77'(X.l) p . X.I ' so 77' coincides with "multipli­
cation by p" on the subset of L' consisting of XI alone. This subset is order
dense in L', so 77' coincides with multiplication by p on C: in particular
7T'U= p . u on A. It follows that (77U)(X) p(x) . u(x) for all x E A. As
observed above, the same holds now for all x (cc X. This is true now for every
u E V, so it is an immediate consequence that (77f)(X) p(x) . f(x) holds
on X for every f E L.

4. SPACES WITH ONLY TRIVIAL ORTHOMORPHISMS

As observed in the introduction, every orthomorphism 7T in the Riesz
space L that is defined by 7Tf c= af for some real constant a is called a trivial
orthomorphism. We prove that there exist Archimedean Riesz spaces
possessing only trivial orthomorphisms.

THEOREM 6. Let L be the Riesz space of all real continuous jilllctions f
on [a, b] such that f is piecewise linear (i.e., the graph off consists of a finite

number of line segments). Then L has only trivialorthol1lorphisms.

Proof: L is a Riesz subspace of C([a, bD. We show that every ortho­
morphism in L can be extended to an orthomorphism in C([a, bD. Note first
that iffE C([a, bDand E :> 0 are given, there exist s, tEL such that s f t
and t(x) ... sex) ~ E for all x E [a, b]. Indeed, consider a partition of [a, b]
such that the oscillation of f on each subinterval [Xi-l, x.,] is at most E/3,
then letf* be the continuous function such thatf*(xi) f(Xi) at all points Xi
and such that f* is linear on each [XII' Xi], and finally let S .=~ f* .... E/3
and t ~~ f* ·t· E/3. Now let En ~ 0 and denote the corresponding sand t by Sn

and tn' We may assume that Sn t and t n 1, (otherwise, replace Sn by
SUP(Sl , ... , sn»'
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Let e(x) = 1 for all x E [a, b] and let 1T be a positive orthomorphism in L.

The function e is a member of L, so 1Te makes sense. Let (1Te)(x) = p(x) on
[a, b], so 0 ~ pEL. It follows from 0 :S; SrrJx) - S,,(x) ~ en for m n that

so the sequence (1TSn : n = 1, 2, ...) of continuous functions converges
uniformly on [a, b]. The limit function g(x) is therefore continuous. Evidently
g does not depend on the particular approximating sequence (sn: n = 1, 2, ... ).
Indeed, it is easy to see that

g = SUp(1TS: S E L, S ~f).

Set g= 1Tf This can be done for every f E q[a, b)). It is evident that 1T is
a positive orthomorphism in q[a, b)). Hence, by one of our earlier results,
(1Tf)(X) =p(x) 'f(x) holds for every fEC([a,b)); in particular this holds
for every f E L. It follows now from p = 1Te E L that p is a piecewise linear
function. The product p .f must likewise be piecewise linear for every f E L.
Also, p must be continuous. This is possible only if p is a nonnegative
constant. Hence, 1T is trivial.

If the natural number n is fixed and L is the Riesz space of all real
continuous functions f on [a, b] such that f is piecewise a polynomial of
degree at most n, then again L has only trivial orthomorphisms. On the
other hand, if L is the space of all real continuous functions f such that f is
piecewise a polynomial (without restrictions on the degree), then L is an
Archimedean f-algebra, and so (by Theorem 3) every orthomorphism is a
pointwise multiplication by a function of L.

5. ORTHOMORPHISMS IN U AND IN BANACH FUNCTION SPACES

For the determination of all orthomorphisms in an Lq space we need a few
more facts about orthomorphisms in an arbitrary Archimedean Riesz space L.
The collection Orth(L) of all orthomorphisms in L is obviously a real vector
space, partially ordered by defining that 1Tl ::?: 1T2 holds whenever 1Tl - 1T2
is a positive orthomorphism. It can be proved now that Orth(L) is a Riesz
space; given 1Tl and 1T2 in Orth(L), the greatest lower bound 1Tl /\ 1T2 III

Orth(L) exists and satisfies

forall fEL+.

Denoting by 1 the identity transformation in L, it follows in particular that,
for any positive orthomorphism 1T and any natural number n, the ortho­
morphism 1Tn = 1T /\ nl exists and 1Tn satisfies

1T"f = (1T /\ n1)(/) = inf(1T(/), nf) forall fEL+. (1)
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Now, let u, VEL -;- be such that u is a member of the band generated by v.
It is well-known that in this case inf(u, nv) t u as n --+ CfJ. In other words,
u is the supremum of the sequence (inf(u, nv): n ~~ 1, 2, ...). We apply this
to the situation in formula (1). Here the element TT(.f) is in the band generated
by.f; and hence we have

TTnf = inf( TT!, nj) t TTl as n·~ CfJ for all fE L . (2)

In the case that L is the space U (0 < q CfJ) on a measure space of a-finite
measure, the supremum in L" of a sequence is just the pointwise supremum
(!L-almost everywhere).

THEOREM 7. Let!L be a (totally) a-finite measure in the point set X, let
o < q < CfJ and let L be the Riesz space L"= U(X, 1.1.,). Then, given the
orthomorphism TT in L =~ L", there exists a real function p(x) E L'''' such that
(TTj)(X) = p(x) ·f(x) holds on X for every fE U. Conversely, every p EU
gives thus rise to an orthomorphism TT in U.

Proof We assume first that !L(X) is fi.nite. In this case the unit function e,
satisfying e(x)~2 I for all x E X, is an element of U. Note that Theorem 3 is
not applicable, because in general U is not an algebra. We proceed, therefore,
somewhat differently.

Given the positive orthomorphism TT inU, let TTe == p. Then 0 p(x) E L".
For n =c 1, 2, ... , let TTn = TT 1\ nI, and letpn(x) == min(p(x), n) for all x EO X.
Since Pn 'f ,=c U for everyfE U, it is evident that the mapping TTn ', defined by

(TTn'f)(X) == Pn(x) ·f(x). for all fe L".

is a positive orthomorphism in U. Observe now that

so TTn and TTn' coincide on the order dense set {e} and hence
In other words, we have

,
7r n .-:..-~:: 7T n .

(TTnj)(X) == Pn(x) . f(x), for all fE U.

Now assume that 0 ~ fo EO U. As observed in formula (2), we have
o ~ TTnfo t TTfo as n -~ CfJ in the space U, which means (as also observed
already) that the function TTfo is the pointwise supremum of the sequence of
functions (TTnfo: n = 1,2,...). Also,

o ~C:;; Pn(x) ..f~(x) t p(x) . fo(x)
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holds pointwise on X. It follows that (7Tfo)(x) = p(.>.:) ·fu(x). Hence

(7Tf)(X) c= p(x) 'I(x), for all fE U.
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It remains to prove that p(x) E Un. For this purpose, let g(x) be an arbitrary
(real) fL-summable function on X. Then Ig Il/Q E U, so p' g i1/'1 E [I by
the result just established. Hence, if g is summable, then p" . g is summable.
It is wellknown that in a measure space of a-finite measure this is possible
only if p'l E [7, i.e., if p E [7).

The extension to the case that X is the union of a countable number of
sets of finite measure is evident, and so is the extension to the case that 7T

is an arbitrary (not necessarily positive) orthomorphism.
Finally, let X be as above and let L be a Banach function space L p (i.e., a

linear subspace of the space of all real fL-measurable functions on X, normed
and norm complete with respect to the Riesz norm p). Without loss of
generality we may assume that X is saturated, i.e., X is a countable union of
sets XI. (k 1,2, ...) such that for each k the characteristic function of XI:
is an element of LI' . Also, since L p is Banach, the Riesz-Fischer inequality
holds, i.e., pCI.~ f,,) ,::; L~ p(};,) if °,::; fn E L" and if the right-hand side
converges.

THEOREM 8. If L is the Banachjimction space L p and 7T is an orthomorphism
in L =c L p , then there exists a real function p(x) E U'J such that (71/)(X) =cc

p(x) .I(x) for all fE L p • Conversely, every p E LX) gives thus rise to an
orthomorphism 7T in LI' .

Proof Let 7T be a positive orthomorphism in L" . The proof that there
exists a function p(x) °such that (7TI)(x) = p(x) .I(x) holds for all f E L o

is exactly as in the L'I case. It remains to prove that p(x) is bounded. This
can be done by means of a variant of the method used by G. G. Lorentz
and D. G. Wertheim [5] to show thatfis an element in the associate space
L e,' of L p if and only if fg is summable for every g E L p • Assume that p(x) is
not bounded. Then there exists for every n = 1,2, ... a set En of finite positive
measure such that p(x) ~> n3 for all x E' En . Let °'c::: !r,(x) E L p be such that
fn vanishes outside En and Ilfn II = pU;,) = 1. The existence of a functionfn
of this kind follows from the hypothesis that X is saturated. Then Ii 7Tf" II n3

for all n. Now, let I(x) = L~ n-2j,,(x) for all x E X. By the Riesz-Fischer
inequality we have

If II ~ L n-2 1lfn I = L n-2 < 00,

so fELl" which implies 7Tf E L o • On the other hand it follows from
r n-2j,,;;: 0, that 7Tf> n-2 7T;;, > 0, so il 7Tfll ;;: n-2 II 7Tf" 11 > n, for all n.
This is impossible. Hence, p(x) is bounded.
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