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1. INTRODUCTION

In the present paper L will denote a Riesz space (vector lattice), that is to
say, L is a real vector space which is at the same time a lattice such that the
vector space structure and the lattice structure are compatible (this means
thatitf < gholdsin L,thenf - h L g - hforall he L and af < ag for all
real ¢ 2= 0). The least upper bound and the greatest lower bound of fand g
in L will be denoted by sup(f, g) and inf(f, g}, respectively; the customary
abbreviations f = sup(f, 0) and f~ -= sup(—/, 0) will be used, and the
absolute value |/ of fis defined by | /| -~ f~ -I-f~. Elements ' - 0 are
called positive elements; the set L~ of all positive elements is the positive cone,
and elements f, g satisfying inf(Jf], g} =0 are said to be disjoint
(notation: £ | g).

A familiar example is the vector space C(fa, b]) of all real continuous
functions on the closed interval [a, b]. To say that /-7 ¢ holds in this space
simply means that f(x) < g(x) for all x = {a, b}, and sup(f, g) and inf(/. g)
are the ordinary pointwise supremum and infimum. Another example is the
space C,(—on, oo) of all real continuous functions on (-—, o0) possessing
a compact carrier. An example of a somewhat different nature is obtained by
considering a measure space (X, 4, p) and a number ¢ (0 < ¢ << w0), and
taking now the vector space L7 - Li(X, u) of all real p-measurable functions
f on X having the property that the integral of | /| over X is finite. In this
example functions differing only on a set of measure zero have to be identified,
and f <C g means now that f(x) =7 g(x) holds for p-almost every x & X,

Given the Riesz space L, a linear mapping = from L into itself is called a
positive orthomorphism whenever inf(f, g) -= 0 implies inf(7f, g) == 0. The
general theory of orthomorphisms has been developed in some recent
papers [2, 4], but these papers do not contain many examples. In particular,
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one would like to know all possible orthomorphisms in the spaces mentioned
above. In the space C([a, b)) it is easy enough to indicate a certain class of
positive orthomorphisms. Indeed, given a nonnegative function p(x) in
C(la, b)), the linear mapping = in C([q, b]), defined by (7/)}(x) = p(x) - f(x),
is evidently a positive orthomorphism. The question arises whether every
positive orthomorphism in C([a, b]) is of this kind. We shall prove in the
present paper that the answer is affirmative. It is of course not difficult to
guess that this has something to do with the ring structure of C([a, 6]). In
some other examples, however, we shall have to step beyond the ring
structure. In the space C,(— oo, oo) for example one sees immediately that if
p(x) is a nonnegative continuous function on (—cc, o0), not necessarily with
a compact carrier, then pointwise multiplication by p(x) is a positive ortho-
morphism. We shall prove that every positive orthomorphism in C.(-— oo, o)
is of this kind. Finally, in the example of the space L? it is evident that
pointwise multiplication by a nonnegative L= function is a positive ortho-
morphism, and also for this example it will be proved that every positive
orthomorphism is such a multiplication.

In the proofs we shall need an interesting theorem about commutativity of
so-called f-algebras. We explain what an f-algebra is. The Riesz space L is
called a Riesz algebra if there exists in L a (not necessarily commutative)
ring multiplication with the usual algebra properties (in particular (af) g =
flag) = a(fg) for real a) and such that f, g € L+ implies fg € L*. The Riesz
algebra is then called an falgebra if inf(f, g) == 0 implies inf(/if, g) =
inf(fh, g) = 0 for every fic L*; in other words, whenever left and right
multiplication by positive elements are positive orthomorphisms. The notion
of an f-algebra is derived from the example that L consists of real functions
on a point set X with the Riesz space structure defined pointwise. If in this
case the ordinary pointwise product fg is a member of L for all fand g in L,
then I is automatically an f-algebra, and L is then even a commutative
Jf-algebra. The theorem referred to above is the theorem that every
Archimedan f-algebra is commutative (the Riesz space L is called
Archimedean if it follows from 0 < nf < g for n = 1, 2,... that f == 0). This
commutativity result was proved first by G. Birkhoff and R. S. Pierce [3];
their proof is based on what they call a “metamathematical theorem,”
namely, the theorem that the class of Riesz algebras is “equationally
definable.” Due to this the Archimedan f-algebra L can be treated in the proof
as if L were linearly ordered; it follows then that

nlfg —gfl <f?-+g%

holds for all f, g € L* and all natural numbers n. Since L is Archimedean,
Jg = gf is an immediate consequence. Several years later S. J. Bernau [1]
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published an elementary proof for the above inequality. We present a third
commutativity proof; a very simple proof although it cannot be called
elementary because it depends ultimately upon some nontrivial facts about
orthomorphisms.

Given the Riesz space L and the non-negative number 4, it is evident that
multiplication by «a is a positive orthomorphism in L. Let us call this a trivial
orthomorphism. It may be asked whether there exist Riesz spaces possessing
only trivial orthomorphisms. The answer is affirmative; we shall prove that
the Riesz space of all real continuous functions f on [0, [] that are piecewise
linear (i.e., the graph of f consists of a finite number of line segments) is an
example. This example arose from some remarks made at a lecture given at
the Mathematical Institute of Nijmegen University.

2. ORTHOMORPHISMS IN ARCHIMEDEAN f-ALGEBRAS

We first collect some simple facts about Riesz spaces. The linear subspace K
of the Riesz space L is called a Riesz subspace of L if f, g e K implies
sup(f, g) € K and inf(f, g) € K. The subset D of L is said to be solid if it
follows from fe D and | g!| < | f] that g€ D. Any solid linear subspace is
called an ideal. Every ideal 1s a Riesz subspace. Any ideal 7 with the extra
property that whenever a subset of 7 has a least upper bound in L then that
least upper bound is a member of 7, is called a hand. Given the (nonempty)
subset D of L, the set D? of all g € L satisfying g | ffor all fe D is called the
disjoint complement of D. The disjoint complement of D* will be denoted by
D7 It is evident from the definition that D is a subset of D¢ Hence, since
D, C D, obviously implies D;? D D,? it follows from D C D? that D? D D4,
On the other hand, replacing D by D? in D C D% we obtain D C D¢,
Hence D? - D% In other words, if B is the disjoint complement of some
nonempty set, then B - B™. We shall also need the notion of order
denseness. The subset D of L is called order dense if D* -= {0} or, equivalently,
if D3 = [

Now, let # be a positive orthomorphism in the Riesz space L. i.e.,
inf(f, g) = 0 implies inf(=f, g) -= 0. It follows that inf(f, g) == 0 also implies
inf(=f, mg) = 0, and it is easy to derive from this that

7{inf(/, g)} = inf(zf, =g),

holds for all f, ge L. The same formula with inf replaced by sup is an
immediate consequence. Hence, the mapping = preserves finite suprema and
infima. Any linear mapping in L preserving finite suprema and infima is
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called a Riesz homomorphism. Any positive orthomorphism is, therefore, a
Riesz homomorphism. The converse is not true; if L = C(—o0, c0) and =
is a translation, i.e., (7f)(x) = f(x -+ a) for some constant a 5= 0, then = is
a Riesz homomorphism, but not an orthomorphism. Since any Riesz
homomorphism 7 preserves finite suprema and infima, the range R, of =
is a Riesz subspace of L. This holds in particular, therefore, if 7 is a positive
orthomorphism. In some cases, for example if = is pointwise multiplication
by a strictly positive function in the space C(la, b]), the range R, is an ideal.
There exist also examples, however, that R is not an ideal in L. Let L be the
Riesz space consisting of all real continuous functions f on [0, 1] such that
f(0) = 0 and the (right) derivative f'(0) exists as a finite number. The positive
orthomorphism 7 in L is defined by (mf)(x) = x - f(x). Then the function
f(x) == x?isin R, and g(x) = x®sinxte L with g! -/ Butgisnota
member of R because otherwise we should have xsin x~'e L. Hence, R,
is not an ideal. The kernel (null space) K, and the range R, of a positive
orthomorphism = in the Archimedean Riesz space [ are related by the
formula K, = (R,)%; the proof is not trivial but elementary.

Any linear mapping = in the Riesz space L such that # = 7 — 7, with =,
and m, positive orthomorphisms is called an orthomorphism. One of the
fundamental results about orthomorphisms in an Archimedean Riesz space
is that the formula K, = (R,)? continues to hold in this more general case.
In [2] and [4], this was proved by means of the representation theory for
Archimedean Riesz spaces. It is shown then that for any Archimedean Riesz
space L there exists an isomorphic space L™ consisting of real continuous
(or continuous in the extended sense that +-c0 and — <0 are allowed as values)
functions on a topological space £2; an orthomorphism = in L corresponds
with pointwise multiplication by an appropriate function p(w) in L”. The
space &2, although compact and Hausdorfl, is extremally disconnected
(i.e., the closure of every open set is open). Thus, if for example L is the space
C({0, 17), the corresponding space L™, although consisting again of continuous
functions, cannot be identified with the original space L in the sense that ©
and [0, 1] can be regarded as identical, because [0, 1] is not extremally
disconnected. In this respect, therefore, the situation is different from the
situation for the Gelfand representation, where C([0, 1]) is regarded as a
commutative Banach algebra. For this reason, although every orthomorphism
in L™ is a pointwise multiplication, we may not yet conclude that the same
holds in L = C([0, 1]).

We prove now that if 7, and 7, are orthomorphisms coinciding on an order
dense set in the Archimedean Riesz space L, then m; = 7, .

THEOREM 1. Let m, and mw, be orthomorphisms in the Archimedean Riesz
space L such that m, and =, coincide on the order dense set D. Then m = .
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Proof. The mapping o == m, ~- m, is also an orthomorphism in L. It
follows from K, =« (R,)? that K is a disjoint complement, so (K,)¥* = K,
by one of our earlier remarks. Since D C K, holds by hypothesis and since
D = [ (because D is order dense), we have

L~ DUC(K)" - K,,

so K, = L. This shows that = is the null mapping, and so 7, = 5.

Assume now that f and g are elements in the f-algebra [ satisfying
inf( f, g) == 0. Then fand g are positive elements, so right multiplication by g
is a positive orthomorphism, i.e., inf(fg, g) = 0, so fge{g}% Similarly it
follows from inf(g, #) == 0 for any A = 0 in {g}? that inf(fg, A) = 0, so
fge{g}® Hence fge{gl* N {g}*, so fg == 0. Now, let p | ¢ in L. Then

inf(p-, ¢t) == inf(pt, ¢g7) = inf(p~, g*) = inf(p~, ¢) = 0,

soptg™ == ptqT = p~q* == p~q— = 0 by what was proved already. It follows
that pg = 0. It has been proved thus that in an f-algebra p | ¢ implies
pg == 0. We use this in the proof of the commutativity theorem.

THEOREM 2. Every Archimedean f-algebra is commutative.

Proof. Given the Archimedean f-algebra L, let p be an arbitrary element
of L+. Multiplication on the left by p is a positive orthomorphism =, in L
and multiplication on the right by p is a positive orthomorphism =, in L.

{pid. Also, myp == p* == m,p, so =, and =, coincide for p. Now, let D be the
subset of L consisting of p and { p}¢. Then D? - {0}, so D is order dense.
Furthermore, 7, and =, coincide on D. Hence, by the preceding theorem,
we have 7, —~ 7., i.e., pf == fp for all f< L. It follows easily that multipli-
cation is commutative.

In the next theorem it will be proved that in an Archimedean f-algebra with
unit element every orthomorphism is a multiplication.

THEOREM 3. Let L be an Archimedean f-algebra with unit element (with
respect to multiplication). Given the orthomorphism w in L, there exists an
element p e L such that wf = pf holds for every fe L. Conversely, every
p e L gives rise to an orthomorphism = in L defined by =f = pf for all f¢ L.
The orthomorphism = is positive if and only if the corresponding element p is
positive.

Proof. Let e be the unit element of L. Given the orthomorphism = in L,
let p = me. The product pfisin L forevery f€ L, so 7 [ == pf defines a linear
mapping s, from L into itself. Evidently, multiplication by p* is a positive
orthomorphism in L (by the definition of an f-algebra), and the same holds
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for multiplication by p—. Hence, multiplication by p is an orthomorphism
in L, that is to say, 7, is an orthomorphism in L. The orthomorphisms = and
ar; coincide on the set {e}, consisting of e only. The set {e} is order dense in L
(indeed, if fe {e}?, then f | e, so fe == 0 by one of the remarks made earlier,
ie., f=0). It follows then from Theorem | that = = =, , so =f = pf
forall fe L.

Exampres. (i) Let the Riesz space L consist of real functions on a
nonempty point set X (with the vector space structure and the order structure
in the usual pointwise manner), and in addition let L be an algebra with
respect to pointwise multiplication. Furthermore, let the unit function e,
satisfying e(x) = 1 forall x € X, be a member of L. Then L is an Archimedean
fralgebra with unit. Hence, the linear mapping = in L is an orthomorphism

holds on X for every f'c L. This holds in particular if L is the space C(X) of
all real continuous functions on a topological space X or the space C,(X)
of all bounded real continuous functions on X.

{if) Let L be the space M(X, p) of all real and p-almost everywhere
finite p-measurable functions on the point set X, where p is a measure in X
and where p-almost equal functions are identified. The orthomorphisms in L
are the pointwise multiplications. The same holds if L is the subspace
L*(X, py of all bounded functions in M(X, u).

(iify The theorem covers the case that L is one of the sequence spaces
(s), I or (¢). We recall that (s) is the space of all real sequences and (¢) is the
space of all convergent real sequences. The theorem can also be applied if L
is the space of all real sequences /= (f1, /5 ,...) with £, constant for n = n,
(with n, depending upon f). The same holds if L is the space of all real
sequences f = (fy, f,,...) such that f, assumes only finitely many different
values (these values depending upon f).

(iv) Given the Hilbert space H (over the complex numbers), let J# be
the ordered vector space of all bounded Hermitian operators in H (if
A, Bz, then A =T B whenever (Ax, x) <% (Bx, x) for all x € H). The space
J is not a Riesz space, unless in the trivial case that H is one-dimensional.
Let & be a nonempty subset of 5 such that all members of & commute
mutually, and let €"(Z) be the second commutant of Z. Then €"(2) is an
Archimedean Riesz ring, and the members of ¥"(%) commute mutually
(c.f. [6, Section 55]). Furthermore, for 4, B< €" (%), we have 4 | B if and
only if AB = 0, where 8 is the null operator. It follows that €"(%) is an
Archimedean falgebra. Hence, the mapping = from ¢”(2) into itself is an
orthomorphism if and only if there exists B ¢ €"(%) such that w(4) — BA
holds for all 4 € €"(2).
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The case that L is the space of all real sequences with only finitely many
non-zero terms is not covered by Theorem 3 because the unit sequence is not
in L. The following theorem takes care of this case and similar cases.

THEOREM 4. Let the Riesz space L consist of real functions on the point
set X, where X is the disjoint union of the collection of subsets (X,: x € {a}).
Let e, be the characteristic function of X, , and let it be given that for each
a € {a} and for all f, g € L the functions e, , fe. , ge, and fee, are members of L.
Given the orthomorphism w in L, we set p, = me, for each «. Then p, vanishes
outside X, , and denoting by p the function on X equal to p, on each X, , we have

(mf)x) = p(x) - f(x) for all f€ L.

Proof. There is no less of generality if we assume that = is a positive
orthomorphism. It follows then from inf(e,,e5) =0 for o % 8 that
inf(me, , e5) — 0, so p, = we, vanishes outside X, . Note now that /' | ¢,
implies inf(f*, e,) == inf(f, ¢e,) == 0, so inf(nf~,e¢,) == inf{af~, e,) =0,
i.e., 7w/ 1 e, .In other words, if /'€ L vanishes on X, , then =/ vanishes on X, .
It follows that if £ and f, coincide on X, , then =f; and =f, conicide on X .
Given an arbitrary /¢ L, the functions fand f, == fe, coincide on X, , so =f
and =/, coincide on X, , i.c.,

(7 ) x) = (7 )(x) for xeX,.

The functions of 1, with domain restricted to X, , form an Archimedean
J-algebra with unit ¢, , so

(X)) = p(x) * fulx) == plx) - f1X), for xelX,.
Combining the so obtained results, we get
(mf)x) == plx) - flx), for xeX,.

The last formula holds for all « e {x} simultaneously, and so (zf)(x) ==
p(x) * f(x) holds for all xe X.

ExaMpLEs. {v) If 7 isan orthomorphism in the space of all real sequences
f o (fy. Jy,...) with only finitely many nonzero terms, then there exists a
real sequence p - (py, ps»...) such that (=f), = p,f, for all n. Conversely,
every real sequence thus defines an orthomorphism in this space.

(vi) If m is an orthomorphism in the space (¢,) of all real sequences
converging to zero, then there exists a real sequence p == (py, p, ....) such that
(7f ), = pof.forall n. Itiseasy to see that in addition the sequence (p, . p, ,...)
must be bounded in order that =fe(c,) should hold for every fe (cy).
Conversely, every bounded sequence thus defines an orthomorphism in (cg).
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3. ORTHOMORPHISMS IN THE SPACE OF REAL CONTINUOUS FUNCTIONS ON A
LocarLy CoMPACT HAUSDORFF SPACE

In the present section we assume that X is a locally compact Hausdorff
space and L is the Riesz space of all real continuous functions on X with
compact carrier, i.e., L = C/X).

THEOREM 5. If 7 is an orthomorphism in L == CAX), there exists a real
continuous function p(x) on X such that (af)(x) = p(x) - f(x) holds for all
fe L. Conversely, every real continuous p(x) on X gives rise to an ortho-
morphism in L.

Proof. (i) Given the open subset 4 of X with compact closure 4, there
exists an open subset B with compact closure such that 4- C B. Indeed,
assign to each xe A~ an open neighborhood U, with compact closure.
Then (J (U,: x€ A-) is an open covering of 4A~, so there exists a finite
subcovering. The union of the sets in the finite subcovering may be chosen as
the required set B. It follows that there exists a real continuous function e (x)
on X such that 0 e, (x) <<l on X, edx) =1 for xe 4 and e,(x) =0
outside B. Note that e, is, therefore, a member of L.

(i) Let 7 be an orthomorphism in L. It is no restriction for our
purposes to assume that = is a positive orthomorphism. We show first that if
/e L and f vanishes on the open subset 4 of X, then =f vanishes on A.
We may assume that fe L+. Given any point x, € A4, there exists a function
ty(x) € L such that 0 <C uy(x) <X [ on X, uy(x,) == 1 and uy(x) == 0 outside A.
Then inf( f, u,) = 0, so inf(#f, u,) =+ 0, which implies that (#f)(x,) = 0.
This holds for every x, € 4, so «f vanishes on A.

(1ity Let (4,: « € {«}) be the collection of all open subsets of X such that
A, 1s compact. The collection is directed upwards with respect to partial
ordering by inclusion. To each « we assign a function e, e L satisfying
0 = e(x) <X 1 on Xand e, (x) = 1| on 4, (thisis possible by (i)). Furthermore,
if 7 is the given positive orthomorphism, let we, == p, for every « e {a}.
Note that for a point x, in A, the value p.(x,) does not depend on the values
assumed by e, outside A, (this follows from (ii)). Note also that p(x) == py(x)
for x ¢ A, N A, (by (ii) again). Hence, this common value may be denoted
simply by p(x). Since each x € X is a point of at least one A, , the function p(x)
is defined on the whole set X. Evidently p(x) is continuous and nonnegative
on X.

(iv) Let u(x) be a nonnegative function in L, and denote the set
(x: u(x) > 0) by A. It will be proved that (7u)(x) = p(x) - u(x) holds for all
x € X, and it is sufficient, therefore, to show this for all x € 4 (since u(x) =0
on the complement of A~ implies (7u)(x) = 0 on that set). The set of all fe L,
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with domain restricted to 4, is a Riesz space L’ of real continuous functions
on A with the characteristic function y, of 4 as one of its members (note that
A is one of the A4, , so y,, is the restriction of the corresponding e,). The space
L’ is a ring with respect to pointwise multiplication. The function p(x) is on
A == A, the restriction of the corresponding p,(x), so pfe L’ for all fe L'
This shows that multiplication by p(x) gives rise to an orthomorphism in L'
The “restriction” to L’ of the given orthomorphism = is an orthomorphism
=" in L', given by

7'(fxa) = (nf) x4, forall fc L.

The mapping =" is well defined on L' because fy, gy, implies that =f and
arg coincide on A4 (by (ii)). Note that #'u == 7u on A for the given function
ue L*, and note also that #'(x,) == p - x4. so #’ coincides with “‘multipli-
cation by p” on the subset of L’ consisting of v, alone. This subset is order
dense in L', so =’ coincides with multiplication by p on L'; in particular
7'u = p-u on A It follows that (mu)(x) —~ p(x) u(x) for all xc 4. As
observed above, the same holds now for all x € X. This is true now for every
ue Lt so it is an immediate consequence that (7f)(x) - p(x) - f(x) holds
on X for every fe L.

4. SpAacES WITH ONLY TRIVIAL ORTHOMORPHISMS

As observed in the introduction, every orthomorphism = in the Riesz
space L that is defined by =/ == af for some real constant ¢ is called a trivial
orthomorphism. We prove that there exist Archimedean Riesz spaces
possessing only trivial orthomorphisms.

THEOREM 6. Let L be the Riesz space of all real continuous functions f
on [a, b] such that f is piecewise linear (i.c., the graph of f consists of a finite
number of line segments). Then L has only trivial orthomorphisms.

Proof. L is a Riesz subspace of C{[a, b]). We show that every ortho-
morphism in L can be extended to an orthomorphism in C{[a, b]). Note first
thatif e C([a, b]) and € > 0 are given, thereexists, r € L such thats < f = ¢
and #(x) — s(x) << € for all x € [a, b]. Indeed, consider a partition of [a, b]
such that the oscillation of f on each subinterval [x,_,, x,] is at most /3,
then let /* be the continuous function such that f *(x;) = f(x,) at all points x;
and such that f* is linear on each [x,_, . x;], and finally let 5 = f* - ¢/3
and ¢t == f* -}- ¢/3. Now let ¢,, | 0 and denote the corresponding s and ¢ by s,,
and 1,. We may assume that s, 1 and ¢, (otherwise, replace s, by

Sup(sl ERRAS Sn))
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Let e(x) = 1 for all x € [o, b] and let = be a positive orthomorphism in L.
The function e is a member of L, so we makes sense. Let (we)(x) = p(x) on
[a, b], so 0 < pe L. Tt follows from 0 < s,(x) — s,(x) < e, for m = n that

0 < TSy — TSy ‘< €n D>

so the sequence (ms,:#n = 1,2,...) of continuous functions converges
uniformly on [a, b]. The limit function g(x) is therefore continuous. Evidently
g does not depend on the particular approximating sequence (s,,: n == 1, 2,...).
Indeed, it is easy to see that

g =sup(ms:seL,s < f).

Set g == 7f. This can be done for every fe C([a, b]). 1t is evident that = is
a positive orthomorphism in C([a, b]). Hence, by one of our earlier results,
(mf)(x) = p(x) - f(x) holds for every fe C(|a, b]); in particular this holds
for every f'e L. It follows now from p = me € L that p is a piecewise linear
function. The product p - f must likewise be piecewise linear for every f'e L.
Also, p must be continuous. This is possible only if p is a nonnegative
constant. Hence, « is trivial.

If the natural number n is fixed and L is the Riesz space of all real
continuous functions f on [a, #] such that f is piecewise a polynomial of
degree at most », then again L has only trivial orthomorphisms. On the
other hand, if L is the space of all real continuous functions f such that f'is
piecewise a polynomial (without restrictions on the degree), then L is an
Archimedean f-algebra, and so (by Theorem 3) every orthomorphism is a
pointwise multiplication by a function of L.

5. ORTHOMORPHISMS IN L% AND IN BANACH FUNCTION SPACES

For the determination of all orthomorphisms in an L? space we need a few
more facts about orthomorphisms in an arbitrary Archimedean Riesz space L.
The collection Orth(L) of all orthomorphisms in L is obviously a real vector
space, partially ordered by defining that =, = , holds whenever 7, — r,
is a positive orthomorphism. It can be proved now that Orth(L) is a Riesz
space; given m; and w7, in Orth(L), the greatest lower bound m; A 7, in
Orth(L) exists and satisfies

(A m)(f) = inf(m(f), m(f))  forall felL+.

Denoting by 7 the identity transformation in L, it follows in particular that,
for any positive orthomorphism = and any natural number », the ortho-
morphism 7, = 7 A nl exists and 7, satisfies

mof = (7 A nD)(f) = inf(=(f), nf)  forall felL+. (1)
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Now, let u, v € L+ be such that u is a member of the band generated by v.
It is well-known that in this case inf(x, nv) 1« as n — oo. In other words,
1 is the supremum of the sequence (inf(w, nv): n == 1, 2,...). We apply this
to the situation in formula (1). Here the element 7( /) is in the band generated
by £, and hence we have

m.) = inf(=f, nf) t =f as n-> w forall felL*. (2)

In the case that L is the space L7 (0 << ¢ -< o) on a measure space of o-finite
measure, the supremum in L“ of a sequence is just the pointwise supremum
(p-almost everywhere).

THEOREM 7. Let p be a (totally) o-finite measure in the point set X, let
0 << g << o0 and let L be the Riesz space L* = LUX, p). Then, given the
orthomorphism  in L. == L%, there exists a real function p(x) € L* such that
(mf)x) = p(x) - f(x) holds on X for every fe L1. Conversely, every pec L~
gives thus rise to an orthomorphism = in L.

Proof.  We assume first that w(X) is finite. In this case the unit function e,
satisfying e(x) == 1 for all x € X, is an element of L7 Note that Theorem 3 is
not applicable, because in general L7is not an algebra. We proceed, therefore,
somewhat differently.

Given the positive orthomorphism = in L% let w¢ = p. Then 0 =X p(x) € L“.
Forn = 1,2,..., let m, = 7 A nl, and let p,(x) = min( p(x), n) for all xe X.
Since p,, - f= L for every f€ LY, it is evident that the mapping =", defined by

(m, ) (x) = pux) - f(x), forall fe L4,
is a positive orthomorphism in L7. Observe now that
m.e = inf(me, ne) = inf( p, ne) = p, = mw'e,

so m, and w7, coincide on the order dense set {¢} and hence =, = =, .
In other words, we have

(mf)X) == p(x) < f(x), forall felL.

Now assume that 0 < f, L% As observed in formula (2), we have
0 < m,fy } fy as n — oo in the space L¢, which means (as also observed
already) that the function #f; is the pointwise supremum of the sequence of
functions (7, fo: n = 1, 2,...). Also,

0 << pux) - folx) 1 p(x) - folx)
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holds pointwise on X. [t follows that (#f)(x) = p(x) - fy(x). Hence
(mf)x) = p(x) - f(x), forall fel”

[t remains to prove that p{x) € L. For this purpose, let g(x) be an arbitrary
(real) p-summable function on X. Then | g |Y/%e L%, so p-igilfte L by
the result just established. Hence, if g is summable, then p” - ¢ is summable.
It is wellknown that in a measure space of o-finite measure this is possible
onlyif pie L” ie,if pe L™,

The extension to the case that X is the union of a countable number of
sets of finite measure is evident, and so is the extension to the case that =
is an arbitrary (not necessarily positive) orthomorphism.

Finally, let X be as above and let L be a Banach function space L, (i.e., a
linear subspace of the space of all real p-measurable functions on X, normed
and norm complete with respect to the Riesz norm p). Without loss of
generality we may assume that X is saturated, i.e., X is a countable union of
sets X, (kK = 1, 2,...) such that for each k the characteristic function of X;,
is an element of L,. Also, since L, is Banach, the Riesz-Fischer inequality
holds, ie.. p(3; f) <= 31 p(f) if 0 <X f, €L, and if the right-hand side
converges.

TaeoreM 8. If L is the Banach function space L, and m is an orthomorphism
in L == L, then there exists a real function p(x)e L* such that (nf)(x) =
pxY - f(x) for all fel,. Conversely, every pe L™ gives thus rise to an
orthomorphism m in L, .

Proof. Let 7r be a positive orthomorphism in L,. The proof that there
exists a function p(x) > 0 such that (#f)(x) = p(x) - f(x) holds for all fe L,
is exactly as in the L? case. It remains to prove that p(x) is bounded. This
can be done by means of a variant of the method used by G. G. Lorentz
and D. G. Wertheim [5] to show that fis an element in the associate space
L, of L, if and only if fg is summable for every g € L, . Assume that p(x) is
not bounded. Then there exists for every n == 1, 2,... a set E,, of finite positive
measure such that p(x) = »n® for all xe E,, . Let 0 < f,(x) € L, be such that
f» vanishes outside E, and || f,, || = p(f,) = 1. The existence of a function f,,
of this kind follows from the hypothesis that X is saturated. Then|, =f,, || == »®
for all n. Now, let f(x) = 3, n%,(x) for all xe X. By the Riesz-Fischer
inequality we have

Ifh< Y m2lfol = Y02 < o,

so feL,, which implies nfeL,. On the other hand it follows from
f=n?, =0, that of = n2af, > 0, sol| nf|| = n2| =f, || = n, for all n.
This is impossible. Hence, p(x) is bounded.
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